Thursday, March 16, 2017 2:43 PM

Definition. A topological space (X,J) is compact if every open cour has a finite subcover.

Logical statement. For each GCJ with UB = X, there exists finite FCB such that $U\mathcal{F} = X$.

Often, we need to talk about whether a subset A in a space X is compact. Definition. A subset A in (X,J) is compact if (A, J/A) is compact. Equivalently For each GCJ with UB DA, there exists a finite FCB such that UF JA.

Related Concepts

Compact. Every open cover GCJ for X has a finite subcover JCG.

Sequentially Compact Every sequence in X has a subsequence converges in X. Bolzano-Weierstrass Every infinite set in X

has a cluster point in X.

Review that [a,b] CR is compact Let G be an open cover for [a,b] Idea L. Consider

L= { x \in [a,b]: C has a finite }

subcruen for [a,x] }

Since a & L , we have L + \$

Clearly, b is an upper bound of L i S = Sup L exists

It can be shown that S<b leads

to a contradiction

This method needs order, not even for RM

Idea 2. Assume 6 has no finite subcover Subdivide [a,b] = [a, a+b] v [a+b, b]

Ack if 6 has finite subcover on each.

If true for both, then 6 has a finite subcover for [a,b].

Therefre, at least one side needs infinite ower.

Repeat the subdivision agriment on it.

At the end, I nested intervals and

a singleton. This leads to contradiction.

Weakness

Completeness is used!!
However, compactness is not the same.
They are only related.

In the 2nd proof, order is avoided, but need to divide the space into two "halves". Similar method obviously works for \mathbb{R}^n , $n \ge 2$. In any case, a complete metric is needed; some notion of boundedness (called totally bounded) is enough.

So far, in the case of R, within a bounded set or in the case of a complete metric set with suitably boundedness, a closed subset is compact.

Natural Questin. How is closedness related to compactness.?

下回分解